

AVOIDING PROPERTY
PROLIFERATION

Part 1

By Dan Carey

Avoiding Property Proliferation 1

Logical Necessity Meets Elegance

Screwdrivers generally have only a small set of head configurations

(flat, Phillips, hex) because the intention is to make accessing contents

or securing parts easy (or at least uniform).

Now, imagine how frustrating it would be if every screw and bolt in

your house or car required a unique screwdriver head. They might be

grouped together (for example, a bunch of different sized hex heads),

but each one was slightly different. Any maintenance task would take

much longer and the amount of time spent just organ izing the

screwdrivers would be inordinate.

Yet that is precisely the approach that most

OWL modelers take when they over-specify

their ontology’s properties.

On our blog, we once briefly discussed the

concept of elegance in ontologies. A key

criterion was, “An ontology is elegant if it

has the fewest possible concepts to cover the

required scope with minimal redundancy

and complexity.”

Let’s take a deeper look at object properties in that light. First, a quick

review of some of the basics.

1. An ontology describes some subject matter in terms of the

meaning of the concepts and relationships within that

ontology’s domain.

2. Object properties are responsible for describing the

relationships between things.

3. In the RDFS and OWL modeling languages, a developer can

declare a property’s domain and/or its range (the class to which

the Subject and/or Object, respectively, must belong).

Domain and range for

ontological properties are not

about data integrity, but logical

necessity. Misusing them leads

to an inelegant (and

unnecessary) proliferation of

properties.

https://www.semanticarts.com/blog/how-can-i-ensure-that-an-ontology-is-elegant/

Avoiding Property Proliferation 2

Break the Habit

In our many years’ experience teaching our classes on designing and

building ontologies, we find that most new ontology modelers have a

background in relational databases or Object-Oriented

modelling/development. Their prior experience habitually leads them

to strongly tie properties to classes via specific domains and ranges.

Usually, this pattern comes from a desire to curate the triplestore’s

data by controlling what is getting into it.

But specifying a property’s domain and range will not (necessarily) do

that.

For example, let’s take the following assertions:

 The domain of the property :hasManager is class :Organization.

 The individual entity :_Jane is of type class :Employee.

 :_Jane :hasManager :_George.

Many newcomers to semantic technology (especially those with a SQL

background) expect that the ontology will prevent the third statement

from being entered into the triplestore because :_Jane is not declared to

be of the correct class. But that’s not what happens in OWL. The

domain says that :_Jane must be an :Organization, which pres umably is

not the intended meaning.

Because of OWL’s Open World paradigm, the only real constraints are

those that prevent us from making statements that are logically

inconsistent. Since in our example we have not declared the

:Organization and :Employee classes to be disjoint, there is no logical

reason that :_Jane cannot belong to both of those classes. A reasoning

engine will simply infer that :_Jane is also a member of the

:Organization class. No errors will be raised; the assertion will not be

rejected. (That said, we almost certainly do want to declare those

classes to be disjoint.)

“An ontology is elegant if it has the fewest possible concepts to

cover the required scope with minimal redundancy and

complexity.”

https://www.semanticarts.com/dbbo/
https://www.semanticarts.com/dbbo/

Avoiding Property Proliferation 3

Keep it Useful

Quite apart from the ineffectiveness of relying on the domain and

range to curate the data, there is also the detrimental effect on the

ontology’s usefulness and elegance if that pattern is used repeatedly to

create properties that differ only in domain and/or range.

Consider this set of properties:

 :hasVendorAddress has domain :Organization.

 :hasCustomerAddress has domain :Person.

 :hasEmployeeAddress has domain :Employee.

In this case, a triplestore user wanting to query the

addresses must be aware of all the properties in this

:hasAddress pattern and either:

a) explicitly know in advance for which class they

want results, or

b) union different sets together in the WHERE

clause to get all the desired results back.

And what happens when there’s a need to record

your company’s facility addresses? Yet another

property must be created, if this pattern is to be

followed. Now we are getting into a different

screwdriver for every small variation.

Looking again at the criterion for elegance given

above, we see that it would be far less redundant

and complex to have a single property :hasAddress

with no declared domain. Then, the query writer

only needs to know and remember one property and

can get the results back for all Subject classes more

simply. Or they can add a single line to the WHERE

clause explicitly stating which Subject classes or

categories they want. It also means no lag time

getting a change through governance when the new

facilities address data needs to be loaded.

This is a much more intuitive approach for those

writing queries and greatly reduces the

maintenance burden for the ontologist.

For system- and

application-building

purposes, effective data

integrity mechanisms or

“hints” might well be

needed in your systems.

The need to curate data,

controlling what goes

into the triplestore, is

quite legitimate. But

generally, the ontology

is not the appropriate

place to do that.

Fortunately, the W3C

has created the SHACL

language to be used with

OWL ontologies for

things like defining data

integrity constraints

that software developers

can use in GUIs, ETL

scripts, and APIs.

https://www.semanticarts.com/blog/rdf-shapes/

Avoiding Property Proliferation 4

At this point, the astute observer might say, “But if those domain -

bound properties were made sub-properties of :hasAddress, then all the

results would show up in a query using the parent property.” This will

be true if the reasoner is running and the query engine is one that

returns inferred results. (Not all of them do.) It is also the case that if

this super-property/sub-property pattern is used extensively in the

ontology, the reasoner will explode the number of assertions in

memory to be searched through, negatively affecting performance. And

this case still begs the question: what is the sub-property truly for?

What to Remember

So, to recapitulate the main points:

 Domains and ranges are for describing logical necessity, not for

curating data.

o SHACL can be used to document the curatorial data

constraints for the benefit of software developers.

Having too many properties makes using and maintaining the ontology

more difficult.

 Relying on super-property/sub-property inferencing can be

dicey and will affect query performance.

In our experience, it is almost always better to avoid proliferation and

to opt for the elegance of the unconstrained object property.

(We will follow up with another white paper explaining a different set

of reasons and methods for avoiding object property proliferation.)

11 Old Town Square

Suite 200

Fort Collins, CO 80524

970-490-2224

305-425-2224

info@semanticarts.com

© Semantic Arts, Inc.

