Debugging Enterprise Ontologies

by Michael Uschold, Semantic Arts

Presented at CoDeS 2016

International Workshop on
Completing and Debugging the Semantic Web

Crete, Greece
Monday AM May 30, 2016

O OO OO OOOO 0.0

O OOOO/O
OOOOOOOO Q0

OO OO OOOOOOOOOO

semantic arts

2016 Semantic Arts, Inc.

Overview

* The paper on a single slide
® Enterprise ontology

®* Model the real world

® Keep it simple

® Finding and preventing bugs

Inference

.z Manual inspection
of inferred hierarchy

Unexpected
subclass re!

Eexpec
class equivalence

(=
3

it
o

T e e
.z | Ontology Patterns
(helps detect bugs)

Domain & range
(zarefully)

High-level disjoints

Trace explanations

T
.z | Diagnose problems

Use Venn diagrams

“good” ontology™

The Paper on a Single Slide

What makes a

Usable leadsTo Evolvable:%‘\
leadsTo
leadsTo leadsTo
leadsTo
Careful use of leadsTo
Domain & Range
.z | Correct .z Complete
Fidelity to Anticipated uses Understandable
subject matter {the role of competency questions -p._._.__‘_________rlead sTo
Logically
consistent
o
satisfiable \ leadsTo .z | Keepitsimple
E
- deTo leadsTo leadsTo lendsTo EWNamespaces
leadsTo leadsTo leadsTo

Documentation

leadsTo
leadsTo
leadsTo leadsTo

.z | Consistency

Model the MNaming

real world conventions

.z | Anti-Patterns
Scan alphabetized lists
(helps find typos)
SPARQL

2016 Semantic Arts, Inc.

Visualization
aids

Just say it once
(no redundancy)

Enterprise Ontology

Scope: dll/only concepts that are:

® Central to the enterprise
* Stable for a long Hme

* Substantially different from
one another

Separate real world concepts
from application concepts.

gist: Generic
Enterprise Concepts

[

import

,/"/ [Industry Specific]

Concepts

f

Enterprise Ontology import

Enterprise Specific
S~ Concepts

import

Division Specific
Concepts

impaort

/ impaort

Application Specific
Concepts

2016 Semantic Arts, Inc.

Model the Real World

Client’s existing relational database catalog: e 7700 VS. 708
> 1oL * 90% is bloat

7,000 attributes

. Our ontology for client’s full data set:
5 _;‘ 4
Dataextractionand | ® 300 classes
Striplestore popula-%'
\;g\') i N X, 208 properties

Actual implementation footprint:

® Fewer than 50 classes

Fewer than 50 properties

2016 Semantic Arts, Inc. 5

The Importance of Keeping it Simple

(relational) (relational)

Power products Power products
Company A Company B

(triple store)
ontology

Power products

2016 Semantic Arts, Inc.

The Importance of |[Keeping it Simple

(relational) (relational)

Power products Power products

Company A Company B
" understand $ Triple Store

infegrate
"use & evolve Integrated

*More flexible
*Prevents bugs

Power products

2016 Semantic Arts, Inc.

Ways to Catch & Prevent Bugs

sKeep it simple
* Use the inference engine to catch 20-30% of bugs.
Help it along:
= High level digjoints
» Careful use of domain & range

High Level Disjoints

|| Class hierarchy | Class hierarchy (inferred) | gist:Category < —owl:disjointWith—» gist:Intention

¥ owl: Thing
o gist: AllowablePropertyR ange
> gist:Category
- gist:Collection

rdfs:subClass rdfs:subClass

> gist:Content gist:Behavior gist:Permission

l- ----- gist:GenerativeProcess
B0 gist: Group

- gist: IntellectualProperty rdfs:subClass rdfs:subClass
I'- ----- gist:Intention ‘

-~ gist:Language

> gist:Magnitude PhysicianTask HospitalPrivilege
b2 gist:PhysicalThing \ /'

> gistiPlace

- gist:ProcessPlan rdf:type rdf:type

> gist:Ratio

b2 gist: SocialBeing

b gist: TimeInterval (
b gist: UnitOfMeasure

AdmitPatient)

" Have relatively few high level classes that are mostly disjoint.

* Combine with domain & range to catch many errors

2016 Semantic Arts, Inc.

Domain & Range: Use with Caution

® Important way to catch bugs, BUT...
® |+ is common practice to over-constrain domain and range

Examples:
* W3C Media Ontology

» hasPolicy & hasl.anguage can only be used with MediaResource

® Financial Ontology
" hasCount can only be used with Schedule.

® Results in
" difficulty in reuse
" unnecessary proliferation of properties

2016 Semantic Arts, Inc.

10

Ways to Catch & Prevent Bugs

* Manually examine inferred hierarchy for oddities

" Anti-patterns:
" dentify
" brogrammatically find examples

sKeep it simple, avoid proliferation of:
" namespaces
" properties
" classes

11

Namespaces

" |+ is common practice to have a different namespace for every
ontology. | have seen 100+.

Core
rn:: erties
prc:p
|mpcrt |:u:|rt
Dates & Schedules Aents
date agt

date hasC ount

|m|:u:|rt ||'n|:n:|rt

/ AN

Contracts Loans
I {ctr:) I {loan:)

2016 Semantic Arts, Inc.

12

Namespaces

* Not needed for namespace collisions, all on same topic.

*" Error prone for use, extending and refactoring.

* Have to check for use everywhere.

Core 1 Core \
Properties I Properties |
(prop:) i (prop:) I
T e
import import |\ {no domain) '
Dates & Schedules Agents import import
{date:} {agt} / _ _X _______
[date:hasCount] If Dates & Schedules \: j Agents
N (date:)) | (agt:)
i?pnrt i"”F"{"t\ import import
Contracts Loans | Contracts ‘, f Loans -
(ctr:) (loan:) | (ctr:) ; l (loan:) ;

P —— e e

2016 Semantic Arts, Inc.

13

What We Do

» Use single namespace for ontologies on same topic
* No need to check for where used.

* Use different namespaces if under different governance

Core
Properties
(fin:)

fin:hasCount
(no domain}

7 X

import import

/ N\

Dates & Schedules Agents
fin:) (fin:)

(
imp(import
import import / \
/ AN

Contracts Loans Contracts Loans
in)] (fin:) (fin:)

2016 Semantic Arts, Inc.

14

Namespaces: No Free Lunch

®* There is a tradeoff

* This breaks the ‘follow your nose’ principle which makes it easy
to find things on the web.

* This has not been a significant issue for us

" If this is important o you, consider adding more namespaces
and be careful.

" re-factoring is error-prone
" don't end up having the problem semantic tfechnology solves: rigidity

2016 Semantic Arts, Inc.

15

Test Data

* Create a suite of test data
" for ongoing unit testing
" +o illustrate how to use the ontology

» Correctness: ensuring things are the way you think they are.

» Completeness: can you represent the data you need to?

* Understandability: a suite of test examples to show users can
be a redlly fast way for users to get started.

2016 Semantic Arts, Inc.

16

Competency Questions

" 'm a great fan of competency guestions...
" .. but we have not found them to play a magjor role.
* The enterprise ontology is relatively small and generadl.

* Perhaps more useful for more specific ontologies built out to
support particular applications.

2016 Semantic Arts, Inc.

17

Conclusion

® [+s all about usability

* The most usable ontologies are:
" correct,
= complete
" understandable.

* Test data helps with dll three characteristics
* Model the real world - not application-specific concepts
" |nference is a powerful tool, but cannot catch most bugs.

® Anti-patterns are important

2016 Semantic Arts, Inc.

18

Conclusion

» Keep it simple: if in doubt, leave it out
" few classes: intfroduce only if different properties are important
" few properties: introduce only if semantics genuinely different
" few namespaces: new namespace if under different governance

* You can do things that help prevent bugs in the first place
" keep it simple
" make the ontology easy to maintain
= use high-level disjoints & domain and range
" avoid over-constraining domain and range
" ease of use prevents bugs in downstream applications

* Competency guestions have not featured largely
for enterprise ontology development.

2016 Semantic Arts, Inc.

19

