
© 2016 Semantic Arts, Inc. 1

Debugging Enterprise Ontologies

by Michael Uschold, Semantic Arts

Presented at CoDeS 2016

International Workshop on
Completing and Debugging the Semantic Web

Crete, Greece

Monday AM May 30, 2016

© 2016 Semantic Arts, Inc. 2

Overview

•The paper on a single slide

•Enterprise ontology

•Model the real world

•Keep it simple

•Finding and preventing bugs

© 2016 Semantic Arts, Inc. 3

The Paper on a Single Slide

What makes a

“good” ontology?

© 2016 Semantic Arts, Inc. 4

Enterprise Ontology

Scope: all/only concepts that are:

•Central to the enterprise

•Stable for a long time

•Substantially different from

one another

Separate real world concepts

from application concepts.

© 2016 Semantic Arts, Inc. 5

Model the Real World

•7700 vs. 708

•90% is bloat

© 2016 Semantic Arts, Inc. 6

Power products
Company A

(relational)

Power products
Company B

(relational)

Power products

(triple store)

The Importance of Keeping it Simple

?

ontology

© 2016 Semantic Arts, Inc. 7

Power products
Company A

(relational)

Power products
Company B

(relational)

Power products
Integrated

Triple Store

The Importance of Keeping it Simple

•Easy to
understand &
integrate

use & evolve

•More flexible

•Prevents bugs

ontology

© 2016 Semantic Arts, Inc. 8

Ways to Catch & Prevent Bugs

•Keep it simple

•Use the inference engine to catch 20-30% of bugs.

Help it along:

High level disjoints

Careful use of domain & range

© 2016 Semantic Arts, Inc. 9

High Level Disjoints

•Have relatively few high level classes that are mostly disjoint.

•Combine with domain & range to catch many errors

© 2016 Semantic Arts, Inc. 10

Domain & Range: Use with Caution!

• Important way to catch bugs, BUT…

• It is common practice to over-constrain domain and range

Examples:

•W3C Media Ontology
 hasPolicy & hasLanguage can only be used with MediaResource

•Financial Ontology
 hasCount can only be used with Schedule.

•Results in
 difficulty in reuse

 unnecessary proliferation of properties

© 2016 Semantic Arts, Inc. 11

Ways to Catch & Prevent Bugs

•Manually examine inferred hierarchy for oddities

•Anti-patterns:

 identify

programmatically find examples

•Keep it simple, avoid proliferation of :

namespaces

properties

classes

© 2016 Semantic Arts, Inc. 12

Namespaces

• It is common practice to have a different namespace for every

ontology. I have seen 100+.

© 2016 Semantic Arts, Inc. 13

Namespaces

• It is common practice to have a different namespace for every

ontology. I have seen 100+.

•Not needed for namespace collisions, all on same topic.

•Error prone for use, extending and refactoring.

•Have to check for use everywhere.

© 2016 Semantic Arts, Inc. 14

What We Do

•Use single namespace for ontologies on same topic

•No need to check for where used.

•Use different namespaces if under different governance

© 2016 Semantic Arts, Inc. 15

Namespaces: No Free Lunch

•There is a tradeoff

•This breaks the ‘follow your nose’ principle which makes it easy

to find things on the web.

•This has not been a significant issue for us

• If this is important to you, consider adding more namespaces

and be careful.

 re-factoring is error-prone

 don’t end up having the problem semantic technology solves: rigidity

© 2016 Semantic Arts, Inc. 16

Test Data

•Create a suite of test data

 for ongoing unit testing

 to illustrate how to use the ontology

•Correctness: ensuring things are the way you think they are.

•Completeness: can you represent the data you need to?

•Understandability: a suite of test examples to show users can

be a really fast way for users to get started.

© 2016 Semantic Arts, Inc. 17

Competency Questions

• I’m a great fan of competency questions…

•… but we have not found them to play a major role.

•The enterprise ontology is relatively small and general.

•Perhaps more useful for more specific ontologies built out to

support particular applications.

© 2016 Semantic Arts, Inc. 18

Conclusion

• Its all about usability

•The most usable ontologies are:

correct,

complete

understandable.

•Test data helps with all three characteristics

•Model the real world – not application-specific concepts

• Inference is a powerful tool, but cannot catch most bugs.

•Anti-patterns are important

© 2016 Semantic Arts, Inc. 19

Conclusion

•Keep it simple: if in doubt, leave it out

 few classes: introduce only if different properties are important

 few properties: introduce only if semantics genuinely different

 few namespaces: new namespace if under different governance

•You can do things that help prevent bugs in the first place

 keep it simple

 make the ontology easy to maintain

 use high-level disjoints & domain and range

 avoid over-constraining domain and range

 ease of use prevents bugs in downstream applications

•Competency questions have not featured largely

for enterprise ontology development.

