

THE SEVEN FACES OF DR. “CLASS”
By: Dave McComb

The Seven Faces of Dr. “Class” 1

The Seven Faces of Dr. “Class”: Part 1

“Class” is a heavily overloaded term in computer science. Many

technologies have implemented the concept slightly differently. In

this paper we look at the sum total of concepts that might be

implemented under the banner of “class” and then later we’ll l ook at

how different technologies have implemented subsets

The seven facets are:

 Template

 Set

 Query

 Type

 Constraint

 Inclusion

 Elaboration

Template

One aspect of a class is to act as a “template” or “cookie cutter” for

creating new instances. This is also called a “frame” based system,

where the template sets up the frame in which the slots (properties)

are defined. In the simplest case, say in relational where we define a

table with DDL (Data Definition Language) we are essentially saying

ahead of time what attributes a new instance (tuple) of this class

(table) can have. Object Oriented has this same concept, each instance

of a class can have the attributes as defined in the class and its

superclasses.

Set

A class can be seen as a collection of all the instances that belong to the

set. Membership could be extensional (that is instances are just

asserted to be members of the class) or intensional (see below under the

discussion about the inclusional aspect). In the template aspect, it’s

almost like a caste system, instances are born into their class and stay

there for their lifetime. With set-like classes an instance can be

simultaneously members of many sets. One of the things that is

interesting is what we don’t say about class membership. With sets,

we have the possibility that an instance is either provably in the set,

provably not in the set, or satisfiably either.

The Seven Faces of Dr. “Class” 2

Query

Classes create an implied query mechanism. When we create instances

of the Person class, it is our expectation that we can later query this

class and get a list of the currently know members of the class. In Cyc

classes are called “collections” which reflect this idea that a class is,

among other things, a collection of its members. A system would be

pretty useless if we couldn’t query the members of a class. We separate

the query facet out here to shine a light on the case where we want to

execute the query without previously having defined the class. For

instance if we tag photos in Flickr with a folksonmy, and someone later

wants to find a photo that had a combination of tags, a class, in the

traditional sense was not created, unless you consider that the act of

writing the query is the act of creating the class, and in which case

that is the type of class we’re talking about here. This is primarily the

way concept like taxonomies such as SKOS operate: tags are proxies for

future classes.

Type

Classes are often described as being types. But the concept of “type”

despite being bandied about a lot is rarely well defined. The distinction

we’re going to use here is one of behavior. That is, it is the type aspect

that sets up the allowable behavior. This is a little clearer in

implementations that have type and little else, like xsd. It is the xsd

type “date” that sets up the behavior for evaluating before or after or

concurrent. And it is the polymorphism of types in object oriented

that sets up the various behaviors (methods) that an object can respond

to. It is the “typeness” of a geographicalRegion instance that allows us

to calculate things like its centroid and where the overlap or boundary

is with another geographicalRegion. We rarely refer to the class of all

items that have xsd:date as if it were a collection, but we do expect

them to all behave the same.

Constraint

Constraints are generally implemented as “guards” and prevent non -

compliant instances from being persisted. There is no reason that the

constraints need to be associated with the classes, they could easily be

written separately and applied to instances, but many implementations

do package constraints with the class definition, for two reasons: one

the constraints are naturally written in and lexically tied to the cl ass

definition and the other is just for packaging around the concept of

cohesion. The constraint can be a separate language (as with OCL the

The Seven Faces of Dr. “Class” 3

Object Constraint Language) or may be an extension to the class

definition (as ranges and foreign key constraints are in relational).

Inclusion

That is, inclusion criteria. This is for classes that support inference,

and are the rules that determine whether an instance is a member of

the class, or whether all members of a class are necessarily members of

another class. It also includes exclusion criteria, as they are just

inferred membership in the complement. While it is conceivable to

think of the “open world” without inclusion criteria, it really comes to

the fore when we consider inclusion criteria. Once we have rules of

inclusion and exclusion from a set, we have set up the likelihood that

we will have many instances that are neither provably members or

provably not members, hence “satisfiability.”

Elaboration

Elaboration is what else can be known about an item once one knows

its class membership. In Object Oriented you may know things about

an instance because of the superclasses it is also a member of, but this

is a very limited case: all of this elaboration was known at the time the

instance was created. With more flexible systems, as an instance

creates new membership, we know more about it. For instance, let’s

say we use a passport number as evidence of inclusion in the class of

Citizens, and therefore the class of People, we can know via

elaboration that the passport holder has a birthday (without knowing

what their birthday is).

To the best of our knowledge, there is no well supported language and

or environment that supports all these facets well. As a practical

consequence designers select a language implement the aspects that are

native and figure out other strategies for the remaining facets. In the

next installment of this series, we will examine how popular

environments satisfy these aspects, and what we need to do to shore up

each.

The Seven Faces of Dr. “Class” 4

The Seven Faces of Dr. “Class”: Part 2

Now that we have teased apart the seven aspects of “class -ness”, let’s

see what we can do with this. Let’s first look at “class” as it has been

implemented in existing systems.

Class Relational
Object

Oriented
OWL Rules

Template

Yes, DDL is a

template for

each tuple

Yes, new() Possible

Query Yes, via SQL

Not native,

must be

implemented

usually in the

persistence

layer

Not native, can

be done with

SPARQL +

rdf:type

Depends on

underlying

persistence

Set Yes Not native

Type

Only of

attribute

ranges

Best practice

polymorphic

types

Because there

isn’t a default

implementation

there aren’t

types

Not native

Constraint

FK + other

constraints

often

implemented at

DB level

Typically

coded in the

“setter”

methods

No, OWL doesn’t

have a

constraint

mechanism

Constraints

could be

written in

rules

Inclusion Yes

Interference

can be coded in

rules

Elaboration Yes

So what do we make of this? The first thing is that none of the

environments we currently have available cove rs all the aspects of

class out-of-the-box. Some of the aspects end up being patterns or

add-ons.

Armed with this we can begin to start thinking of new configurations

of language plus pattern that will give us all the capabilities we need,

and in many cases do a better job (sometimes when we accept the

The Seven Faces of Dr. “Class” 5

default implementation of one of these aspects we short change what

we could have had.

The rest of this paper outlines a hybrid set of languages and patterns

that takes maximal advantage of these aspects.

Let’s start with OWL, and use OWL for what it is good for:” inclusion”

and “elaboration.” The “set” aspect of OWL is a bit problematic

because of the two faced nature of the open world (it’s good for some

things and gets in the way in other cases.). Let’s propose the usage and

extension of SPARQL to cover the “query” aspect and the “set” aspect:

by using the NOT operator in SPARQL (and mostly abandoning it in

OWL) and by adding a SATISFIABLE clause to SPARQL. What

SATISFIABLE gives us is access to the open world sets (individuals

that might be terrorists for example) but closing the world with a

negation as failure style NOT operator (essentially give me all the

passengers who are NOT [provably] terrorists).

The “template” and “constraint” facility may end up being closely

related. There have been some attempts to add a constraint feature to

OWL, but maybe we should disconnect it a bit more, and probably it

should be implemented in rules or a DSL (Domain Specific Language)

that implements rule like behavior. The simple case of template creates

instances that are relatively flat and look like the class they were

cookie-cuttered out of. Correspondingly a constraint language would

only need to concern itself with validity rules for the handful of

attributes or relations that were attached directly to the instance.

But imagine a template language that could create a large constellation

of objects and relationships. In some ways it would be a bit like the

factory pattern in Object Oriented Design Patterns. Sometimes

templates make instances in their own image, but that is just the

simplest case. The language of the template would mostly be: “make,”

“find” and “findOrMake” (each would have a set of parameters which

would be the clues or finding and the minimal values for making), and

“assert” (which would have a propertyName and an object which could

be another “findOrMake.”

The constraint language would have to support: exists (against a query

or enum), doesn’t exist query or enum) format (type or regular

expression), range, cross fied (<, <=,=,>,>=) and timeNow. The

constraint language is a guard, and acts on the transactional level.

The Seven Faces of Dr. “Class” 6

The type aspect brings up the concept: what can I do “to” or “with”

instances of this type. With the simple types the behavior is pretty

much built in, but implied: with dates you can calculate durations, and

overlaps. With geographical primitives you can calculate distances,

and areas and overlaps. Documents can be printed and edited. Things

or messages can be sent to addresses (depending on the type of address,

determines the type of thing or message that can be sent). Textual

content can be translated from language to language. Magnitudes can

be compared and converted to different units of measure.

Sensors/Monitors can be “read” and actuators can started, stopped or

moved. Programs can be run. Obligations can be discharged or

violated. The question is: is something similar to gist, sufficient to

define the behavioral primitives or is a language of behavior

needed? Content can be rendered to appropriate media (music to

speakers, text and graphics to printers or displays. Communiques can

be sent to people or organizations.

Summary

All seven aspects of class are necessary and useful. No language gives

us a native way to easily express all seven aspects easily and

unambiguously. Until such as language exists, we can best serve our

needs by adopting a set of patterns and techniques to supply the

missing capability from whatever environment we’re in.

11 Old Town Square

Suite 200

Fort Collins, CO 80524

970-490-2224

305-425-2224

info@semanticarts.com

© Semantic Arts, Inc.

