

QUANTUM ENTANGLEMENT,
FLIPPING OUT AND INVERSE
PROPERTIES

See Named Property Inverses: Yay or Nay for a shorter

version of this paper

By: Michael Uschold

https://semanticarts.com/blog/named-property-inverses/

Flipping Out and Inverse Properties

Quantum Entanglement, 1

Property Inverses and Perspectives

Figure 1: Quantum Entanglement

An OWL property represents a way that two

things can be related to each other, e.g. being a

parent or guaranteeing a loan. An OWL property

is directional, which means it corresponds to the

perspective of exactly one of the related things.

For example, the child has a parent, but the parent

has a child. The US government guarantees a loan,

but the loan is guaranteed by the US government.

Flipping Out and Inverse Properties

Quantum Entanglement, 2

It is important to understand that logically, both perspectives always

exist; they are joined at the hip. If Michael has Joan as a parent, then it

is necessarily true that Joan has Michael as a child – and vice versa. If

from one perspective, a new relationship link is created or an existing

one is broken, then that change is immediately reflected when viewed

from the other perspective. This is a bit like two quantumly entangled

particles. The change in one is instantly reflected in the other, even if

they are separated by millions of light years. Inverse p roperties and

entangled particles are more like two sides of the same coin, than two

different coins.

Figure 2: Two sides of the same coin.

In OWL we call the property that is from the other perspective the

inverse property. Given that a property and its inverse are

inseparable, technically, you cannot create or use one without

[implicitly] creating or using the other. If you create a property

hasParent, there is an OWL syntax that lets you refer to and use that

property’s inverse. In Manchester syntax you would write:

“inverse(hasParent)”. The term ‘inverse’ is a function that takes an

object property as an argument and returns the inverse of that

property. If you assert that Michael hasParent Joan, then the inverse

assertion, Joan inverse(hasParent) Michael, is inferred to hold. If you

decide to give the inverse property the name parentOf, then the

inverse assertion is that Joan parentOf Michael. This is summarized in

Figure 3 and the table below.

Subject Predicate Object
Michael hasParent Joan
Joan parentOf Michael
Joan inverse(hasParent) Michael

http://muonray.blogspot.com/2014/09/overview-of-quantum-entanglement.html

Flipping Out and Inverse Properties

Quantum Entanglement, 3

In the case of guaranteeing a loan, we might call the property from the

perspective of the guarantor: ‘guarantees’. We can use it to assert that

US_Govt :guarantees Loan123. This implicitly asserts that

Loan123 inverse (:guarantees) US_Govt. Again, we could

decide to create an explicit inverse property. Can you think of a good

name for it? It is good practice to choose terms that can result in

triples that can be read in somewhat English-like expressions. Michael

hasParent Joan. US_Govt guarantees Loan123. So what is the blank

that would sound right here: Loan123 US_Govt. We will pick this up

again below.

Figure 3: Properties with named and anonymous inverses.

Should you have a named inverse?

Here we consider the ramifications of having a named property

inverses. There is no universal agreement on this issue, and at

Semantic Arts, we have gone back and forth. Initially, we created th em

as a general rule, but then we noticed some down sides, so now we are

more careful. Below are four downsides of using named inverses

(roughly in order of growing importance). The first two relate to ease

of learning and understanding the ontology. The last two relate

inference and triple stores.

1. Names: It can be difficult to think of a good name for the

inverse, so you might as well just use the syntax that explicitly

says it is the inverse. It will likely be easier to understand.

2. Cluttered property hierarchy: Too many inverses can

significantly clutter up the property hierarchy, making it

difficult to find the property you need, and more generally, to

learn and understand what properties there are in the ontology,

and what they mean.

Flipping Out and Inverse Properties

Quantum Entanglement, 4

3. Slower inference: Too many named inverses can significantly

slow down inference.

4. More space: If you run inference and materialize the triples, a

named inverse will double the number of triples that use a g iven

property.

Except for the second these are fairly self-explanatory, and it’s a bit of

a long explanation, so we will defer it to the end of the article.

Given these downsides, are there any situations when you still want to

create named inverses? When might the downsides not be so bad, or

simply fail to arise? When might the benefits be compelling enough to

outweigh the downsides? The main benefit for named inverses is

convenience and clarity. It is just easier and more natural to just say

“guarantees” instead of “inverse(isGuaranteedBy)”.

Names: We use gist:fromAgent and gist:toAgent to link an email

message to the recipient and to the sender. What would you call this

property from the recipient’s perspective pointing back to the

message? There is no obvious short, simple, and intuitive name that

readily comes to mind. One possible name for the inverse is:

messageSentToAgent. For another example, consider a product under

development and there is a property linking it to the plant where they

intend to manufacture it. So the property from the perspective of the

product, might be called intendedManufacturingPlant. But what would

you call it going the other direction? Sometimes there is no good

answer. This may be the case when it is hardly ever used from th e

other perspective, so there is no common English term. You can make

up a name like “intendedToManufacture”, but it is not particularly

satisfying. The meaning of inverse(intendedManufacturingPlant)

might be equally or more clear, and none of the other do wnsides would

apply.

Fortunately this is the exception, most of the time coming up with

reasonable names for inverse properties is not so hard. So the first

downside often does not arise.

Cluttered property hierarchy: There will be up to twice as many

properties in the hierarchy, and the properties are not connected to

their inverses in any way. With today’s tools, there is no getting

around having the inverses clutter up the property hierarchy. The only

option is to use fewer inverses (unless you have a better idea and want

to build your own plugin to view properties).

Flipping Out and Inverse Properties

Quantum Entanglement, 5

Slower inference: Inference engines are getting better and better, and

for many modest-sized ontologies having inverses will not be a

problem. If inference does start slowing down, it could b e any number

of things besides inverses. If it comes to that, then removing inverses

is one of the things you can try to improve efficiency. Start with the

ones that are not getting much use.

More Space: If you do not anticipate building a triple store based on the

ontology and running inference and materializing the inferences, then

that will also not be an issue.

Is There a Preferred Perspective?

Given a property and its inverse, is there a preferred pe rspective? If

so, how can we identify it? For example, does it matter whether you

represent the perspective of the child (hasParent) or of the parent

(parentOf)? Should you prefer guarantees, or guaranteedBy? Should

you prefer the perspective of the person (toAgent) or of the message

(messageSentToAgent)? If you are not representing the inverse, the

preferred perspective is the one you choose to represent. In the above

examples, which perspective would you choose to represent if you only

chose one?

Naming Patterns

Above we saw two examples of named inverses:

hasParent/parentOf and guarantees/guaranteedBy.

These exemplify two common patterns.

 hasX / xOf pattern – Other examples include:

hasOwner / ownerOf, hasMember / MemberOf;

there are many others.

 does / doneBy pattern: guarantees / guaranteedBy,

identifies / identifiedBy, occupies / occupiedBy.

People prefer different linguistic styles, for example

some people prefer a does / isDoneBy pattern. For

example: isGuaranteedBy, isIdentifiedBy, isOccupiedBy.

This works equally well.

Flipping Out and Inverse Properties

Quantum Entanglement, 6

What if you do explicitly define an inverse? Is there a preferred

perspective then? Let’s look at the following OWL in RDF/XML syntax

for the hasParent(parentOf) example in a fictitious geneology

namespace, gen.

<!- Define the property hasParent -->

 <owl:ObjectProperty rdf:about=”&gen;hasParent”/>

<!- Define parentOf to be the inverse of hasParent -->

 <owl:ObjectProperty rdf:about=”&gen;parentOf”>

 <owl:inverseOf rdf:resource=”&gen;hasParent”/>

 </owl:ObjectProperty>

Logically there is no preferred perspective, and any given ontology tool

may or may not indicate a difference between the two perspectives.

However, there is a difference evident in the OWL. One property has

to already be defined in order for the inverse is defined in terms of it.

So, you can think of the property that was defined ‘first’ to be the

preferred perspective. In this case, it would be hasParent. So, to

summarize:

 If you are not representing the inverse, you are preferring the

perspective that you choose to represent.

 If you are representing the inverse property, and you want to

prefer one perspective over the other, then the preferred

perspective is the one that is used to define the inverse.

Logically, there is no preferred perspective, but there are practical

considerations. You may be able to anticipate that target users of the

ontology are likely to prefer one perspective. For example, in a

messaging database or application, the user is almost always going to be

‘on’ a particular message looking at who is in the From or To fields. So

you might prefer toAgent over messageSentToAgent. The other

perspective can also be relevant, in this case search, where you wish to

find all the message sent to or from a given individual (e.g. the sent

folder).

If you are building a loans ontology for a loan company, users are

probably thinking about the loan and wondering who guarantees it. It

may be less likely that they will be thinking about a person or company

and asking what loans they are guaranteeing. This would suggest that

the perspective of the loan is preferred, and the property from that

perspective would be called ‘guaranteedBy’. This could matter from the

Flipping Out and Inverse Properties

Quantum Entanglement, 7

perspective of building out triples data. In addition, the properties may

show up differently in the ontology editing and visualization tool s,

especially in inferences are not shown. This can impact ease of learning

and understanding the ontology. Note that this is highly subjective,

and not everyone will have the same preferences.

Conclusion

There are always tradeoffs. It can still make sense to use n amed

inverses if there are good names for inverses, and if both the property

and its inverse are frequently used in the ontology, and also in triples

that are based on the ontology. Here is our advice:

1. Be selective in creating named inverses.

2. Only use them when they will get frequent use, thereby

justifying their existence.

3. Expected scenarios that are important to target users should

determine which perspective you pick for representi ng an

important relationship.

4. Logically, there is not a preferred perspective for a property vs.

its inverse, but there may be practical reasons to prefer one

over the other.

Flipping Out and Inverse Properties

Quantum Entanglement, 8

Appendix: Cluttering up the Property Hierarchy

To understand how too many inverses can clutter up the property

hierarchy, say we have four relationships that we care about (this

example is a bit artificial, but makes the point).

1. hasChild

2. isGuaranteedBy

3. likes

4. rides

If we create these properties in say Protégé or TopBraid Composer, we

see an alphabetical list like above. If we add in the inverses, look what

happens:

1. childOf

2. guarantees

3. hasChild

4. isGuaranteedBy

5. isLikedBy

6. isRiddenBy

7. likes

8. rides

This is a very short list; in a reasonable-sized ontology there are

dozens of properties that need to be scrolled through. The inverses are

often nowhere near each other. If I have just spent three minutes

studying and understanding the property: “guarantees”, I don’t want

or need to look at the inverse – yet there it is, in my face, taking up

screen real estate. If you create named inverses for all the properties,

there are twice as many properties. This example shows a flat set of

properties. The problem is much worse when there is a property

hierarchy. One property may be two or three levels down in the

hierarchy, but its inverse is at the top level. This is confusing,

especially for beginners. Advanced users will get why that is, but those

named inverses still get in the way.

Flipping Out and Inverse Properties

Quantum Entanglement, 9

With today’s tools, there is no getting around the cluttering of the

property hierarchy if you create a lot of inverses. Why? Because no

tool vendor has provided a way to display a property hierarchy

including inverses in a concise easy to read manner. But it’s not rocket

science, it’s quite simple. Just keep the property and its inverse on the

same line. After all they are not so much different coi ns, as they are

two sides of the same coin. It can look like this:

1. hasChild (childOf)

2. isGuaranteedBy (guarantees)

3. likes (isLikedBy)

4. rides (isRiddenBy)

Voila, four relationships and four properties. It is much easier and

faster to see what is going on. They will show up nicely in an indented

property hierarchy. I wish the tool vendors would do something like

this. There is of course a question of how to choose which property is

in parentheses, but even an arbitrary choice would probably be a big

improvement.

11 Old Town Square

Suite 200

Fort Collins, CO 80524

970-490-2224

305-425-2224

info@semanticarts.com

© Semantic Arts, Inc.

