

CATEGORIES AND CLASSES
By: Dave McComb

Categories and Classes 1

We’ve been working with two clients lately, both of whom are using an

ontology as a basis for their SOA messages as well as the design of their

future systems. As we’ve been building an ontology for this purpose we

became aware of a distinction that we think is quite important, we

wanted to formalize it and share it here.

In an ontology there is no real distinction that I know of between a

class and a category. That is: classes are used for categorizing, and you

categorize things into classes. If you wanted to make a distinction, it

might be that category is used more in the verb form as something you

do, and the class is the noun form.

Categories and Classes in Traditional Apps

But back in the world of traditional applications there is a quite

significant difference (although again I don’t believe this difference

has ever been elaborated). In a traditional (relational or object

oriented) application if you just wanted to categorize something, (say

by gender: male and female) you would create a gender attribute and

depending on how much control you wanted to put on its content you

would either create an enum, a lookup table or just allow anything. On

the other hand if you wanted behavioral or structural differences

between the categories (let’s say you wanted to distinguish sub

contractors from employees) you would set up separate classes or

tables for them, potentially with different attributes and

relationships.

We’ve been studying lately what drives the cost of traditional systems,

and getting this category/class distinction right is one of the key

drivers. Here’s why: in a traditional system, every time you add a new

class you have increased the cost and complexity of the system. If you

reverse engineer the function point methodology, you’ll see that the

introduction of a new “entity” (class) is the single biggest cost driver

for an estimate. So every distinction that might have been a class, that

gets converted to a category, provides a big economic payoff.

It’s possible to overdo this. If you make something a category that

should have been a class, you end up pushing behavior into the

application code, which generally is even less tractable than the

Getting the category/class distinction right is one of

the key drivers of the cost of traditional systems.

Categories and Classes 2

schema. So we were interested in coming up with some guidelines for

when to make a distinction a category and when to make it a class.

Category and Class in gist

As it turns out, we had foreshadowed this distinction, although not for

this reason, in gist, our upper ontology. Gist has a class called

“category” whose intent is to carry categorical distinctions (from one

lower level ontology to another) without necessarily carrying their

definitions.

For instance when we worked with a State Department of

Transportation, we had a class in their enterprise ontology called

“Roadside Feature.” A Roadside Feature has properties such as location

and when by what process it was recorded. Several of their

applications had specific roadside features, for instance “fire

hydrants.” In the application fire hydrant is a class, and therefore is

one in the application ontology. But in the enterprise ontology “fire

hydrant” is an instance of the category class. Instances of fire hydrant

are members of the roadside feature class at the enterprise ontology

level, and associated with the category “fire hydrant” via a property

“categorizedBy.” A fire hydrant can therefore be created in an

application and communicated to another application that doesn’t

know the definition of fire hydrant, with almost no loss of

information. The only thing that is lost on the receiving end is the

definition of fire hydrant, not any of the properties that had been

acquired by this fire hydrant.

Categories and Classes 3

Category and Class, a Formal Distinction

So we came to this: a category is an intensional set with criteria for

defining membership. A class is an extensional set where membership

is explicitly asserted and specific properties can be defined as

necessary.

In an ontology these two definitions can, and almost always do,

overlap. But in a traditional system they don’t. In a traditional system

the overlap is “the excluded middle.”

http://en.wikipedia.org/wiki/Intensional_definition
http://en.wikipedia.org/wiki/Extensional_definition

Categories and Classes 4

This is helpful for us if we’re using our ontology to generate artifacts

for traditional systems, but on closer inspection we’re finding

interesting use even in ontology driven systems. The area in the class

rectangle outside the category box is essentially the primitive classes,

those that cannot be defined in terms of other classes and properties.

The intersecting region are classes that are formally defined, and

therefore we could infer membership. And the category outside class is

something where we accept that a distinction has been made, we may

know the sufficient properties, but we don’t necessarily know any

other necessary properties. Nor do we need to know how the individual

got categorized.

In an ontology, we focus most of our effort on the inters ection:

…these are the classes that have formal definitions. But if we think

deeply about it, what we are doing when we define a class and give it a

formal definition is: we name a class and say it is equivalent to a

restriction. The two things we traditionally haven’t focused on are

classes without definitions (primitive classes) and categories without

classes (many instance based taxonomies fit this pattern).

Our initial work suggests that this is a key pattern for getting large

constellations of ontologies to work together. Feedback, comments,

brickbats all welcome.

11 Old Town Square

Suite 200

Fort Collins, CO 80524

970-490-2224

305-425-2224

info@semanticarts.com

© Semantic Arts, Inc.

